Second Order Differentiability of Convex Functions in Banach Spaces
نویسنده
چکیده
We present a second order differentiability theory for convex functions on Banach spaces.
منابع مشابه
On Polar Cones and Differentiability in Reflexive Banach Spaces
Let $X$ be a Banach space, $Csubset X$ be a closed convex set included in a well-based cone $K$, and also let $sigma_C$ be the support function which is defined on $C$. In this note, we first study the existence of a bounded base for the cone $K$, then using the obtained results, we find some geometric conditions for the set $C$, so that ${mathop{rm int}}(mathrm{dom} sigma_C) neqem...
متن کاملA Simple Theory of Differential Calculus in Locally
A theory of differential calculus for nonlinear maps between general locally convex spaces is developed. All convergence notions are topological, and only familiarity with basic results from point set topology, differential calculus in Banach spaces, and locally convex space theory is assumed. The chain rule for continuous kth order differentiability, smoothness of inverse functions, and functi...
متن کاملPartial second-order subdifferentials of -prox-regular functions
Although prox-regular functions in general are nonconvex, they possess properties that one would expect to find in convex or lowerC2 functions. The class of prox-regular functions covers all convex functions, lower C2 functions and strongly amenable functions. At first, these functions have been identified in finite dimension using proximal subdifferential. Then, the definition of prox-regula...
متن کاملDifferentiability of Cone-monotone Functions on Separable Banach Space
Motivated by applications to (directionally) Lipschitz functions, we provide a general result on the almost everywhere Gâteaux differentiability of real-valued functions on separable Banach spaces, when the function is monotone with respect to an ordering induced by a convex cone with nonempty interior. This seemingly arduous restriction is useful, since it covers the case of directionally Lips...
متن کاملOn Fréchet differentiability of convex functions on Banach spaces
Equivalent conditions for the separability of the range of the subdifferential of a given convex Lipschitz function f defined on a separable Banach space are studied. The conditions are in terms of a majorization of f by a C-smooth function, separability of the boundary for f or an approximation of f by Fréchet smooth convex functions.
متن کامل